Development of anatomically based customizable three-dimensional finite-element model of pelvic floor support system: POP-SIM1.0

Author:

Gordon Mark T.1,DeLancey John O. L.2,Renfroe Aaron1,Battles Andrew1,Chen Luyun23ORCID

Affiliation:

1. Department of Bioengineering, California Baptist University, Riverside, CA, USA

2. Department of Obstetrics and Gynecology, Pelvic Floor Research Group, University of Michigan, Ann Arbor, MI, USA

3. Department of Biomedical Engineering, Pelvic Floor Research Group, University of Michigan, Ann Arbor, MI, USA

Abstract

To develop an anatomically based customizable finite-element (FE) model of the pelvic floor support system to simulate pelvic organ prolapse (POP): POP-SIM1.0. This new simulation platform allows for the construction of an array of models that objectively represent the key anatomical and functional variation in women with and without prolapse to test pathomechanism hypotheses of the prolapse formation. POP-SIM1.0 consists of anatomically based FE models and a suite of Python-based tools developed to rapidly construct FE models by customizing the base model with desired structural parameters. Each model consists of anatomical structures from three support subsystems which can be customized based on magnetic resonance image measurements in women with and without prolapse. The customizable structural parameters include presence of levator ani (LA) avulsion, hiatus size, anterior vaginal wall dimension, attachment fascia length and apical location in addition to the tissue material properties and intra-abdominal pressure loading. After customization, the FE model was loaded with increasing intra-abdominal pressure (0–100 cmH 2 O) and solved using ABAQUS explicit solver. We were able to rapidly construct anatomically based FE models with specific structural geometry which reflects the morphology changes often observed in women with prolapse. At maximum loading, simulated structural deformations have similar anatomical characteristics to those observed during clinical exams and stress magnetic resonance images. Simulation results showed the presence of LA muscle avulsion negatively impacts the pelvic floor support. The normal model with intact muscle had the smallest exposed vaginal length of 11 mm, while the bilateral avulsion produced the largest exposed vaginal length at 24 mm. The unilateral avulsion model had an exposed vaginal length of 18 mm and also demonstrated a tipped perineal body similar to that seen in clinical observation. Increasing the hiatus size, vaginal wall length and fascia length also resulted in worse pelvic floor support, increasing the exposed vaginal length from 18 mm in the base model to 33 mm, 54 mm and 23.5 mm, respectively. The developed POP-SIM1.0 can simulate the anatomical structure changes often observed in women with prolapse. Preliminary results showed that the presence of LA avulsion, enlarged hiatus, longer vaginal wall and fascia length can result in larger prolapse at simulated maximum Valsalva.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3