Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration

Author:

Taillardat Pierre1ORCID,Thompson Benjamin S.23,Garneau Michelle1,Trottier Karelle1,Friess Daniel A.4

Affiliation:

1. Université du Québec à Montréal – Geotop, Canada

2. Sydney Southeast Asia Centre, The University of Sydney, New South Wales, Australia

3. School of Social Sciences, Monash University, Victoria, Australia

4. Department of Geography, National University of Singapore, Singapore

Abstract

The cost-effective mitigation of climate change through nature-based carbon dioxide removal strategies has gained substantial policy attention. Inland and coastal wetlands (specifically boreal, temperate and tropical peatlands; tundra; floodplains; freshwater marshes; saltmarshes; and mangroves) are among the most efficient natural long-term carbon sinks. Yet, they also release methane (CH 4 ) that can offset the carbon they sequester. Here, we conducted a meta-analysis on wetland carbon dynamics to (i) determine their impact on climate using different metrics and time horizons, (ii) investigate the cost-effectiveness of wetland restoration for climate change mitigation, and (iii) discuss their suitability for inclusion in climate policy as negative emission technologies. Depending on metrics, a wetland can simultaneously be a net carbon sink (i.e. boreal and temperate peatlands net ecosystem carbon budget = −28.1 ± 19.13 gC m −2 y −1 ) but have a net warming effect on climate at the 100 years time-scale (i.e. boreal and temperate peatland sustained global warming potential = 298.2 ± 100.6 gCO 2 eq −1 m −2 y −1 ). This situation creates ambivalence regarding the effect of wetlands on global temperature. Moreover, our review reveals high heterogeneity among the (limited number of) studies that document wetland carbon budgets. We demonstrate that most coastal and inland wetlands have a net cooling effect as of today. This is explained by the limited CH 4 emissions that undisturbed coastal wetlands produce, and the long-term carbon sequestration performed by older inland wetlands as opposed to the short lifetime of CH 4 in the atmosphere. Analysis of wetland restoration costs relative to the amount of carbon they can sequester revealed that restoration is more cost-effective in coastal wetlands such as mangroves (US$1800 ton C −1 ) compared with inland wetlands (US$4200–49 200 ton C −1 ). We advise that for inland wetlands, priority should be given to conservation rather than restoration; while for coastal wetlands, both conservation and restoration may be effective techniques for climate change mitigation.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3