The diversity and utility of amyloid fibrils formed by short amyloidogenic peptides

Author:

Al-Garawi Zahraa S.12,Morris Kyle L.1,Marshall Karen E.1,Eichler Jutta3,Serpell Louise C.1ORCID

Affiliation:

1. School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK

2. Chemistry Department, College of Sciences, Al-Mustansyria University, Baghdad, Iraq

3. Department of Chemistry and Pharmacy, University of Erlangen-Nurnberg, Erlangen, Germany

Abstract

Amyloidogenic peptides are well known for their involvement in diseases such as type 2 diabetes and Alzheimer's disease. However, more recently, amyloid fibrils have been shown to provide scaffolding and protection as functional materials in a range of organisms from bacteria to humans. These roles highlight the incredible tensile strength of the cross-β amyloid architecture. Many amino acid sequences are able to self-assemble to form amyloid with a cross-β core. Here we describe our recent advances in understanding how sequence contributes to amyloidogenicity and structure. For example, we describe penta- and hexapeptides that assemble to form different morphologies; a 12mer peptide that forms fibrous crystals; and an eight-residue peptide originating from α-synuclein that has the ability to form nanotubes. This work provides a wide range of peptides that may be exploited as fibrous bionanomaterials. These fibrils provide a scaffold upon which functional groups may be added, or templated assembly may be performed.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3