Multiscale modelling of the feto–placental vasculature

Author:

Clark A. R.1ORCID,Lin M.1,Tawhai M.1,Saghian R.1,James J. L.2

Affiliation:

1. Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand

2. Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand

Abstract

The placenta provides all the nutrients required for the fetus through pregnancy. It develops dynamically, and, to avoid rejection of the fetus, there is no mixing of fetal and maternal blood; rather, the branched placental villi ‘bathe’ in blood supplied from the uterine arteries. Within the villi, the feto–placental vasculature also develops a complex branching structure in order to maximize exchange between the placental and maternal circulations. To understand the development of the placenta, we must translate functional information across spatial scales including the interaction between macro- and micro-scale haemodynamics and account for the effects of a dynamically and rapidly changing structure through the time course of pregnancy. Here, we present steps towards an anatomically based and multiscale approach to modelling the feto–placental circulation. We assess the effect of the location of cord insertion on feto–placental blood flow resistance and flow heterogeneity and show that, although cord insertion does not appear to directly influence feto–placental resistance, the heterogeneity of flow in the placenta is predicted to increase from a 19.4% coefficient of variation with central cord insertion to 23.3% when the cord is inserted 2 cm from the edge of the placenta. Model geometries with spheroidal and ellipsoidal shapes, but the same volume, showed no significant differences in flow resistance or heterogeneity, implying that normal asymmetry in shape does not affect placental efficiency. However, the size and number of small capillary vessels is predicted to have a large effect on feto–placental resistance and flow heterogeneity. Using this new model as an example, we highlight the importance of taking an integrated multi-disciplinary and multiscale approach to understand development of the placenta.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3