Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo

Author:

Golightly Andrew1,Wilkinson Darren J.1

Affiliation:

1. School of Mathematics and Statistics, Newcastle University, Merz Court, Newcastle upon Tyne NE1 7RU, UK

Abstract

Computational systems biology is concerned with the development of detailed mechanistic models of biological processes. Such models are often stochastic and analytically intractable, containing uncertain parameters that must be estimated from time course data. In this article, we consider the task of inferring the parameters of a stochastic kinetic model defined as a Markov (jump) process. Inference for the parameters of complex nonlinear multivariate stochastic process models is a challenging problem, but we find here that algorithms based on particle Markov chain Monte Carlo turn out to be a very effective computationally intensive approach to the problem. Approximations to the inferential model based on stochastic differential equations (SDEs) are considered, as well as improvements to the inference scheme that exploit the SDE structure. We apply the methodology to a Lotka–Volterra system and a prokaryotic auto-regulatory network.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

Cited by 194 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stochastic filtering of reaction networks partially observed in time snapshots;Journal of Computational Physics;2024-10

2. Learning and Regression on the Grassmannian;PRICAI 2023: Trends in Artificial Intelligence;2023-11-10

3. Statistical Inference of Rate Constants in Chemical and Biochemical Reaction Networks Using an “Inverse” Event-Driven Kinetic Monte Carlo Method;The Journal of Physical Chemistry B;2023-10-12

4. Accelerating Bayesian inference for stochastic epidemic models using incidence data;Statistics and Computing;2023-10-12

5. Biological Systems to Computational Systems Biology;Cheminformatics and Bioinformatics at the Interface with Systems Biology;2023-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3