Force fields for simulating the interaction of surfaces with biological molecules

Author:

Martin Lewis1,Bilek Marcela M.1,Weiss Anthony S.234,Kuyucak Serdar1

Affiliation:

1. Department of Applied Physics, University of Sydney, Sydney, New South Wales, Australia

2. Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia

3. Department of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia

4. Bosch Institute, University of Sydney, Sydney, New South Wales, Australia

Abstract

The interaction of biomolecules with solid interfaces is of fundamental importance to several emerging biotechnologies such as medical implants, anti-fouling coatings and novel diagnostic devices. Many of these technologies rely on the binding of peptides to a solid surface, but a full understanding of the mechanism of binding, as well as the effect on the conformation of adsorbed peptides, is beyond the resolution of current experimental techniques. Nanoscale simulations using molecular mechanics offer potential insights into these processes. However, most models at this scale have been developed for aqueous peptide and protein simulation, and there are no proven models for describing biointerfaces. In this review, we detail the current research towards developing a non-polarizable molecular model for peptide–surface interactions, with a particular focus on fitting the model parameters as well as validation by choice of appropriate experimental data.

Funder

Wellcome Trust

National Institutes of Health

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3