Affiliation:
1. Department of Genetics, W. M. Keck Center for Behavioral Biology, North Carolina State University, Campus Box 7614, Raleigh, NC 27697, USA
Abstract
A central issue in evolutionary quantitative genetics is to understand how genetic variation for quantitative traits is maintained in natural populations. Estimates of genetic variation and of genetic correlations and pleiotropy among multiple traits, inbreeding depression, mutation rates for fitness and quantitative traits and of the strength and nature of selection are all required to evaluate theoretical models of the maintenance of genetic variation. Studies inDrosophila melanogasterhave shown that a substantial fraction of segregating variation for fitness-related traits inDrosophilais due to rare deleterious alleles maintained by mutation–selection balance, with a smaller but significant fraction attributable to intermediate frequency alleles maintained by alleles with antagonistic pleiotropic effects, and late-age-specific effects. However, the nature of segregating variation for traits under stabilizing selection is less clear and requires more detailed knowledge of the loci, mutation rates, allelic effects and frequencies of molecular polymorphisms affecting variation in suites of pleiotropically connected traits. Recent studies inD. melanogasterhave revealed unexpectedly complex genetic architectures of many quantitative traits, with large numbers of pleiotropic genes and alleles with sex-, environment- and genetic background-specific effects. Future genome wide association analyses of many quantitative traits on a common panel of fully sequencedDrosophilastrains will provide much needed empirical data on the molecular genetic basis of quantitative traits.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献