The structural basis of protein folding and its links with human disease

Author:

Dobson Christopher M.1

Affiliation:

1. Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QT, UK ()

Abstract

The ability of proteins to fold to their functional states following synthesis in the intracellular environment is one of the most remarkable features of biology. Substantial progress has recently been made towards understanding the fundamental nature of the mechanism of the folding process. This understanding has been achieved through the development and concerted application of a variety of novel experimental and theoretical approaches to this complex problem. The emerging view of folding is that it is a stochastic process, but one biased by the fact that native–like interactions between residues are on average more stable than non–native ones. The sequences of natural proteins have emerged through evolutionary processes such that their unique native states can be found very efficiently even in the complex environment inside a living cell. But under some conditions proteins fail to fold correctly, or to remain correctly folded, in living systems, and this failure can result in a wide range of diseases. One group of diseases, known as amyloidoses, which includes Alzheimer's and the transmissible spongiform encephalopathies, involves deposition of aggregated proteins in a variety of tissues. These diseases are particularly intriguing because evidence is accumulating that the formation of the highly organized amyloid aggregates is a generic property of polypeptides, and not simply a feature of the few proteins associated with recognized pathological conditions. That such aggregates are not normally found in properly functional biological systems is again a testament to evolution, in this case of a variety of mechanisms inhibiting their formation. Understanding the nature of such protective mechanisms is a crucial step in the development of strategies to prevent and treat these debilitating diseases.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference71 articles.

1. PI3^SH3 domain b Guijarro et al. (1998)

2. Fn III domain b Litvinovich et al. (1998)

3. acylphosphatase a=b Chiti et al. (1999b)

4. ADA2h a=b Villegas et al. (2000)

5. a-lactalbumin a ‡ b C. Red¢eld et al.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3