The need for stochastic replication of ecological neural networks

Author:

Tosh Colin R1,Ruxton Graeme D1

Affiliation:

1. Division of Environmental & Evolutionary Biology, Institute of Biomedical and Life Sciences, Graham Kerr Building, University of GlasgowGlasgow G12 8QQ, UK

Abstract

Artificial neural networks are becoming increasingly popular as predictive statistical tools in ecosystem ecology and as models of signal processing in behavioural and evolutionary ecology. We demonstrate here that a commonly used network in ecology, the three-layer feed-forward network, trained with the backpropagation algorithm, can be extremely sensitive to the stochastic variation in training data that results from random sampling of the same underlying statistical distribution, with networks converging to several distinct predictive states. Using a random walk procedure to sample error–weight space, and Sammon dimensional reduction of weight arrays, we demonstrate that these different predictive states are not artefactual, due to local minima, but lie at the base of major error troughs in the error–weight surface. We further demonstrate that various gross weight compositions can produce the same predictive state, suggesting the analogy of weight space as a ‘patchwork’ of multiple predictive states. Our results argue for increased inclusion of stochastic training replication and analysis into ecological and behavioural applications of artificial neural networks.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3