Dynamic publication model for neurophysiology databases

Author:

Gardner Daniel1,Abato Michael1,Knuth Kevin H.1,DeBellis Robert1,Erde Steven M.1

Affiliation:

1. Department of Physiology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021-48 05, USA

Abstract

We have implemented a pair of database projects, one serving cortical electrophysiology and the other invertebrate neurones and recordings. The design for each combines aspects of two proven schemes for information interchange. The journal article metaphor determined the type, scope, organization and quantity of data to comprise each submission. Sequence databases encouraged intuitive tools for data viewing, capture, and direct submission by authors. Neurophysiology required transcending these models with new datatypes. Time–series, histogram and bivariate datatypes, including illustration–like wrappers, were selected by their utility to the community of investigators. As interpretation of neurophysiological recordings depends on context supplied by metadata attributes, searches are via visual interfaces to sets of controlled–vocabulary metadata trees. Neurones, for example, can be specified by metadata describing functional and anatomical characteristics. Permanence is advanced by data model and data formats largely independent of contemporary technology or implementation, including Java and the XML standard. All user tools, including dynamic data viewers that serve as a virtual oscilloscope, are Java–based, free, multiplatform, and distributed by our application servers to any contemporary networked computer. Copyright is retained by submitters; viewer displays are dynamic and do not violate copyright of related journal figures. Panels of neurophysiologists view and test schemas and tools, enhancing community support.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference49 articles.

1. Common data modelöa data type de¢nition for biophysical data exchange;Abato M.;Biophys. J.,1999

2. A uni¢ed neurophysiology database storage schema for time series, histogram, and bivariate datasets. Soc. Ne rosci;Abato M.;Abstr.,1998

3. Basic local alignment search tool

4. Altschul S. F. Madden T. L. Sch̡er A. A. Zhang J. Zhang Z. Miller W. & Lipman D. J. 1997 Gapped BLAST and PSI BLAST: a new generation of protein database search programs. N cleic Acids Res. 25 3389^3402.

5. An on line neurophysiological and behavioral database for the neuroscientist. Soc. Ne rosci;Arbib M. A.;Abstr.,1996

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spike Train Analysis Toolkit: Enabling Wider Application of Information-Theoretic Techniques to Neurophysiology;Neuroinformatics;2009-05-28

2. Terminology for Neuroscience Data Discovery: Multi-tree Syntax and Investigator-Derived Semantics;Neuroinformatics;2008-09

3. Computational Intelligence in Electrophysiology: Trends and Open Problems;Applications of Computational Intelligence in Biology;2008

4. Bioinformatic Databases;Wiley Encyclopedia of Computer Science and Engineering;2007-12-14

5. Informatics in neuroscience;Briefings in Bioinformatics;2007-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3