Affiliation:
1. Department of Physiology, Centre for Research in Neurological Sciences, Faculty of Medicine, Université de MontréalPO Box 6128, Station Centre-Ville, Montréal, Québec, Canada H3C 3J7
Abstract
This review discusses some aspects of plasticity of connections after spinal injury in adult animal models as a basis for functional recovery of locomotion. After reviewing some pitfalls that must be avoided when claiming functional recovery and the importance of a conceptual framework for the control of locomotion, locomotor recovery after spinal lesions, mainly in cats, is summarized. It is concluded that recovery is partly due to plastic changes within the existing spinal locomotor networks. Locomotor training appears to change the excitability of simple reflex pathways as well as more complex circuitry. The spinal cord possesses an intrinsic capacity to adapt to lesions of central tracts or peripheral nerves but, as a rule, adaptation to lesions entails changes at
both
spinal and supraspinal levels. A brief summary of the spinal capacity of the rat, mouse and human to express spinal locomotor patterns is given, indicating that the concepts derived mainly from work in the cat extend to other adult mammals. It is hoped that some of the issues presented will help to evaluate how plasticity of existing connections may combine with and potentiate treatments designed to promote regeneration to optimize remaining motor functions.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献