Fire, climate change and biodiversity in Amazonia: a Late-Holocene perspective

Author:

Bush M.B1,Silman M.R2,McMichael C1,Saatchi S3

Affiliation:

1. Department of Biological Sciences, Florida Institute of Technology150 West University Boulevard, Melbourne, FL 32901, USA

2. Department of Biology, Wake Forest UniversityBox 7325 Reynolda Station, Winston Salem, NC 27104, USA

3. Jet Propulsion Laboratory, California Institute of Technology4800 Oak Grove Drive, Pasadena, CA 91109, USA

Abstract

Fire is an important and arguably unnatural component of many wet Amazonian and Andean forest systems. Soil charcoal has been used to infer widespread human use of landscapes prior to European Conquest. An analysis of Amazonian soil carbon records reveals that the records have distinct spatial and temporal patterns, suggesting that either fires were only set in moderately seasonal areas of Amazonia or that strongly seasonal and aseasonal areas are undersampled. Synthesizing data from 300 charcoal records, an age–frequency diagram reveals peaks of fire apparently coinciding with some periods of very strong El Niño activity. However, the El Niño record does not always provide an accurate prediction of fire timing, and a better match is found in the record of insolation minima. After the time of European contact, fires became much scarcer within Amazonia. In both the Amazonia and the Andes, modern fire pattern is strongly allied to human activity. On the flank of the Andes, forests that have never burned are being eroded by fire spreading downslope from grasslands. Species of these same forests are being forced to migrate upslope due to warming and will encounter a firm artificial fire boundary of human activity.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3