Developmental genetic evidence for a monophyletic origin of the bilaterian brain

Author:

Reichert Heinrich1,Simeone Antonio2

Affiliation:

1. Institute of Zoology, Biozentrum/Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland

2. MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, New Hunts House, London SE1 9RT, UK

Abstract

The widely held notion of an independent evolutionary origin of invertebrate and vertebrate brains is based on classical phylogenetic, neuroanatomical and embryological data. The interpretation of these data in favour of a polyphyletic origin of animals brains is currently being challenged by three fundamental findings that derive from comparative molecular, genetic and developmental analyses. First, modern molecular systematics indicates that none of the extant animals correspond to evolutionary intermediates between the protostomes and the deuterostomes, thus making it impossible to deduce the morphological organization of the ancestral bilaterian or its brain from living species. Second, recent molecular genetic evidence for the body axis inversion hypothesis now supports the idea that the basic body plan of vertebrates and invertebrates is similar but inverted, suggesting that the ventral nerve chord of protostome invertebrates is homologous to the dorsal nerve cord of deuterostome chordates. Third, a developmental genetic analysis of the molecular control elements involved in early embryonic brain patterning is uncovering the existence of structurally and functionally homologous genes that have comparable and interchangeable functions in key aspects of brain development in invertebrate and vertebrate model systems. All three of these findings are compatible with the hypothesis of a monophyletic origin of the bilaterian brain. Here we review these findings and consider their significance and implications for current thinking on the evolutionary origin of bilaterian brains. We also preview the impact of comparative functional genomic analyses on our understanding of brain evolution.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3