Quantum catalysis in B 12 -dependent methylmalonyl-CoA mutase: experimental and computational insights

Author:

Banerjee Ruma1,Dybala-Defratyka Agnieszka2,Paneth Piotr2

Affiliation:

1. Biochemistry Department, University of NebraskaLincoln, NE 68588-0664, USA

2. Faculty of Chemistry, Technical University of Lodz90-924 Lodz, Poland

Abstract

B 12 -dependent methylmalonyl-CoA mutase catalyses the interchange of a hydrogen atom and the carbonyl-CoA group on adjacent carbons of methylmalonyl-CoA to give the rearranged product, succinyl-CoA. The first step in this reaction involves the transient generation of cofactor radicals by homolytic rupture of the cobalt–carbon bond to generate the deoxyadenosyl radical and cob(II)alamin. This step exhibits a curious sensitivity to isotopic substitution in the substrate, methylmalonyl-CoA, which has been interpreted as evidence for kinetic coupling. The magnitude of the isotopic discrimination is large and a deuterium isotope effect ranging from 35.6 at 20 °C to 49.9 at 5 °C has been recorded. Arrhenius analysis of the temperature dependence of this isotope effect provides evidence for quantum tunnelling in this hydrogen transfer step. The mechanistic complexity of the observed rate constant for cobalt–carbon bond homolysis together with the spectroscopically silent nature of many of the component steps limits the insights that can be derived by experimental approaches alone. Computational studies using a newly developed geometry optimization scheme that allows determination of the transition state in the full quantum mechanical/molecular mechanical coordinate space have yielded novel insights into the strategy deployed for labilizing the cobalt–carbon bond and poising the resulting deoxyadenosyl radical for subsequent hydrogen atom abstraction.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3