Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum

Author:

Mayle Francis E.1,Beerling David J.2,Gosling William D.13,Bush Mark B.3

Affiliation:

1. Department of Geography, University of Leicester, Leicester LE1 7RH, UK

2. Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK

3. Department of Biological Sciences, Florida Institute of Technology, 150 West University Blvd, Melbourne, FL 32901, USA ()

Abstract

The aims of this paper are to review previously published palaeovegetation and independent palaeoclimatic datasets together with new results we present from dynamic vegetation model simulations and modern pollen rain studies to: (i) determine the responses of Amazonian ecosystems to changes in temperature, precipitation and atmospheric CO 2 concentrations that occurred since the Last Glacial Maximum (LGM), ca . 21 000 years ago; and (ii) use this long–term perspective to predict the likely vegetation responses to future climate change. Amazonia remained predominantly forested at the LGM, although the combination of reduced temperatures, precipitation and atmospheric CO 2 concentrations resulted in forests structurally and floristically quite different from those of today. Cold–adapted Andean taxa mixed with rainforest taxa in central areas, while dry forest species and lianas probably became important in the more seasonal southern Amazon forests and savannahs expanded at forest–savannah ecotones. Net primary productivity (NPP) and canopy density were significantly lower than today. Evergreen rainforest distribution and NPP increased during the glacial—Holocene transition owing to ameliorating climatic and CO 2 conditions. However, reduced precipitation in the Early–Mid–Holocene ( ca . 8000–3600 years ago) caused widespread, frequent fires in seasonal southern Amazonia, causing increased abundance of drought–tolerant dry forest taxa and savannahs in ecotonal areas. Rainforests expanded once more in the Late Holocene owing to increased precipitation caused by greater austral summer insolation, although some of this forest expansion (e.g. in parts of the Bolivian Beni) is clearly caused by palaeo Indian landscape modification. The plant communities that existed during the Early–Mid–Holocene may provide insights into the kinds of vegetation response expected from similar increases in temperature and aridity predicted for the twenty–first century. We infer that ecotonal areas near the margins of the Amazon Basin are liable to be most sensitive to future environmental change and should therefore be targeted with conservation strategies that allow ‘natural’ species movements and plant community re–assortments to occur.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference115 articles.

1. Mise en évidence de quatre phases d'ouverture de la forêt dense dans le sud-est de l'Amazonie au cours des 60 000 dernières années. Première comparaison avec d'autres régions tropicales;Absy M. L.;C. R. Acad. Sci. Paris,1991

2. A new estimate of changing carbon storage on land since the last glacial maximum, based on global land ecosystem reconstruction

3. Otolith δ 18 O Record of Mid-Holocene Sea Surface Temperatures in Peru

4. The large-scale biosphere-atmosphere experiment in Amazonia (LBA): insights and future research needs;Avissar R.;J. Geophys. Res. 107(D20), 8086. (DOI,2002

5. Baker P. Bush M. Fritz S. Rigsby C. Seltzer G. & Silman M. 2004 Last Glacial Maximum in an Andean cloud forest environment (Eastern Cordillera Bolivia): comment. Geology (In the press.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3