Thoughts on the development, structure and evolution of the mammalian and avian telencephalic pallium

Author:

Puelles Luis1

Affiliation:

1. Department of Morphological Sciences, University of Murcia, 30100, Murcia, Spain

Abstract

Various lines of evidence suggest that the development and evolution of the mammalian isocortex cannot be easily explained without an understanding of correlative changes in surrounding areas of the telencephalic pallium and subpallium. These are close neighbours in a common morphogenetic field and are postulated as sources of some cortical neuron types (and even of whole cortical areas). There is equal need to explain relevant developmental evolutionary changes in the dorsal thalamus, the major source of afferent inputs to the telencephalon (to both the pallium and subpallium). The mammalian isocortex evolved within an initially small dorsal part of the pallium of vertebrates, surrounded by other pallial parts, including some with a non–cortical, nuclear structure. Nuclear pallial elements are markedly voluminous in reptiles and birds, where they build the dorsal ventricular ridge, or hypopallium, which has been recently divided molecularly and structurally into a lateral pallium and a ventral pallium. Afferent pallial connections are often simplified as consisting of thalamic fibres that project either to focal cell aggregates in the ventral pallium (predominant in reptiles and birds) or to corticoid areas in the dorsal pallium (predominant in mammals). Karten's hypothesis, put forward in 1969, on the formation of some isocortical areas postulates an embryonic translocation into the nascent isocortex of the ventropallial thalamorecipient foci and respective downstream ventropallial target populations, as specific layer IV, layers II– III, or layers V–VI neuron populations. This view is considered critically in the light of various recent data, contrasting with the alternative possibility of a parallel, separate evolution of the different pallial parts. The new scenario reveals as well a separately evolving tiered structure of the dorsal thalamus, some of whose parts receive input from midbrain sensory centres (collothalamic nuclei), whereas other parts receive oligosynaptic ‘lemniscal’ connections bypassing the midbrain (lemnothalamic nuclei). An ampler look into known hodological patterns from this viewpoint suggests that ancient collothalamic pathways, which target ventropallial foci, are largely conserved in mammals, while some emergent cortical connections can be established by means of new collaterals in some of these pathways. The lemnothalamic pathways, which typically target ancestrally the dorsopallial isocortex, show parallel increments of relative size and structural diversification of both the thalamic cell populations and the cortical recipient areas. The evolving lemnothalamic pathways may interact developmentally with collothalamic corticopetal collaterals in the modality–specific invasion of the emergent new areas of isocortex.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3