Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change

Author:

Chambers Jeffrey Q.1,Silver Whendee L.2

Affiliation:

1. Earth System Science, University of California, Irvine, CA 92697, USA

2. Division of Ecosystem Science, University of California, Berkeley, CA 94720, USA

Abstract

Atmospheric changes that may affect physiological and biogeochemical processes in old–growth tropical forests include: (i) rising atmospheric CO 2 concentration; (ii) an increase in land surface temperature; (iii) changes in precipitation and ecosystem moisture status; and (iv) altered disturbance regimes. Elevated CO 2 is likely to directly influence numerous leaf–level physiological processes, but whether these changes are ultimately reflected in altered ecosystem carbon storage is unclear. The net primary productivity (NPP) response of old–growth tropical forests to elevated CO 2 is unknown, but unlikely to exceed the maximum experimentally measured 25% increase in NPP with a doubling of atmospheric CO 2 from pre–industrial levels. In addition, evolutionary constraints exhibited by tropical plants adapted to low CO 2 levels during most of the Late Pleistocene, may result in little response to increased carbon availability. To set a maximum potential response for a Central Amazon forest, using an individual–tree–based carbon cycling model, a modelling experiment was performed constituting a 25% increase in tree growth rate, linked to the known and expected increase in atmospheric CO 2 . Results demonstrated a maximum carbon sequestration rate of ca . 0.2 Mg C per hectare per year (ha −1 yr −1 , where 1 ha = 10 4 m 2 ), and a sequestration rate of only 0.05 Mg C ha −1 yr −1 for an interval centred on calendar years 1980–2020. This low rate results from slow growing trees and the long residence time of carbon in woody tissues. By contrast, changes in disturbance frequency, precipitation patterns and other environmental factors can cause marked and relatively rapid shifts in ecosystem carbon storage. It is our view that observed changes in tropical forest inventory plots over the past few decades is more probably being driven by changes in disturbance or other environmental factors, than by a response to elevated CO 2 . Whether these observed changes in tropical forests are the beginning of long–term permanent shifts or a transient response is uncertain and remains an important research priority.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3