Affiliation:
1. Institute of Systematic Botany, University of ZurichZollikerstrasse 107, Zurich 8008, Switzerland
Abstract
The spatial and temporal patterns of plant species radiations are largely unknown. I used a nonlinear regression to estimate speciation and extinction rates from all relevant dated clades. Both are surprisingly high. A high species richness can be the result of either little extinction, thus preserving the diversity that dates from older radiations (a ‘mature radiation’), or a ‘recent and rapid radiation’. The analysis of radiations from different regions (Andes, New Zealand, Australia, southwest Africa, tropics and Eurasia) revealed that the diversity of Australia may be largely the result of mature radiations. This is in sharp contrast to New Zealand, where the flora appears to be largely the result of recent and rapid radiations. Mature radiations are characteristic of regions that have been climatically and geologically stable throughout the Neogene, whereas recent and rapid radiations are more typical of younger (Pliocene) environments. The hyperdiverse Cape and Neotropical floras are the result of the combinations of mature as well as recent and rapid radiations. Both the areas contain stable environments (the Amazon basin and the Cape Fold Mountains) as well as dynamic landscapes (the Andes and the South African west coast). The evolution of diversity can only be understood in the context of the local environment.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
214 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献