MAPK, CREB andzif268are all required for the consolidation of recognition memory

Author:

Bozon Bruno1,Kelly Áine2,Josselyn Sheena A.3,Silva Alcino J.3,Davis Sabrina1,Laroche Serge1

Affiliation:

1. Laboratoire de Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication, CNRS UMR 8620, Université Paris-Sud, 91405 Orsay, France

2. Department of Physiology, Trinity College, Dublin 2, Ireland

3. Departments of Neurobiology, Psychiatry, Psychology and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA

Abstract

There has been nearly a century of interest in the idea that encoding and storage of information in the brain requires changes in the efficacy of synaptic connections between neurons that are activated during learning. Recent research into the molecular mechanisms of long-term potentiation (LTP) has brought about new knowledge that has provided valuable insights into the neural mechanisms of memory storage. The evidence indicates that rapid activation of the genetic machinery can be a key mechanism underlying the enduring modification of neural networks required for the stability of memories. In recent years, a wealth of experimental data has highlighted the importance of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signalling in the regulation of gene transcription in neurons. Here, we briefly review experiments that have shown MAPK/ERK, cAMP response element-binding protein (CREB) and the immediate early gene (IEG)zif268are essential components of a signalling cascade required for the expression of late phase LTP and of certain forms of long-term memory. We also present experiments in which we have assessed the role of these three molecules in recognition memory. We show that pharmacological blockade of MAPK/ERK phosphorylation, functional inactivation of CREB in an inducible transgenic mouse and inactivation ofzif268in a mutant mouse result in a similar deficit in long-term recognition memory. In the continuing debate about the role of LTP mechanisms in memory, these findings provide an important complement to the suggestion that synaptic changes brought about by LTP and memory consolidation and storage share, at least in part, common underlying molecular mechanisms.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 271 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3