RNA interference: advances and questions

Author:

Ullu Elisabetta12,Djikeng Appolinaire1,Shi Huafang1,Tschudi Christian1

Affiliation:

1. Department of Internal Medicine, and Department of Cell Biology, Yale Medical School, 333 Cedar Street, New Haven, CT 06520-8022, USA

2. Department of Internal Medicine, Yale Medical School, 333 Cedar Street, New Haven, CT 06520-8022, USA

Abstract

In animals and protozoa gene–specific double–stranded RNA triggers the degradation of homologous cellular RNAs, the phenomenon of RNA interference (RNAi). RNAi has been shown to represent a novel paradigm in eukaryotic biology and a powerful method for studying gene function. Here we discuss RNAi in terms of its mechanism, its relationship to other post–transcriptional gene silencing phenomena in plants and fungi, its connection to retroposon silencing and possibly to translation, and its biological role. Among the organisms where RNAi has been demonstrated the protozoan parasiteTrypanosoma bruceirepresents the most ancient branch of the eukaryotic lineage. We provide a synopsis of what is currently known about RNAi inT. bruceiand outline the recent advances that make RNAi the method of choice to disrupt gene function in these organisms.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3