Affiliation:
1. Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
Abstract
Glycolipids are a large and heterogeneous family of sphingolipids that form complex patterns on eukaryotic cell surfaces. This molecular diversity is generated by only a few enzymes and is a paradigm of naturally occurring combinatorial synthesis. We report on the biosynthetic principles leading to this large molecular diversity and focus on sialic acid–containing glycolipids of the ganglio–series. These glycolipids are particularly concentrated in the plasma membrane of neuronal cells. Theirde novosynthesis starts with the formation of the membrane anchor, ceramide, at the endoplasmic reticulum (ER) and is continued by glycosyltransferases of the Golgi complex. Recent findings from genetically engineered mice are discussed. The constitutive degradation of glycosphingolipids (GSLs) occurs in the acidic compartments, the endosomes and the lysosomes. Here, water–soluble glycosidases sequentially cleave off the terminal carbohydrate residues from glycolipids. For glycolipid substrates with short oligosaccharide chains, the additional presence of membrane–active sphingolipid activator proteins (SAPs) is required. A considerable part of our current knowledge about glycolipid degradation is derived from a class of human diseases, the sphingolipidoses, which are caused by inherited defects within this pathway. A new post–translational modification is the attachment of glycolipids to proteins of the human skin.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
156 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献