Evolution and the origin of the visual retinoid cycle in vertebrates

Author:

Kusakabe Takehiro G.12,Takimoto Noriko2,Jin Minghao3,Tsuda Motoyuki4

Affiliation:

1. Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan

2. Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan

3. Department of Ophthalmology and Neuroscience Center, LSU School of Medicine, 2020 Gravier Street, Suite D, New Orleans, LA 70112, USA

4. Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan

Abstract

Absorption of a photon by visual pigments induces isomerization of 11- cis -retinaldehyde (RAL) chromophore to all- trans -RAL. Since the opsins lacking 11- cis -RAL lose light sensitivity, sustained vision requires continuous regeneration of 11- cis -RAL via the process called ‘visual cycle’. Protostomes and vertebrates use essentially different machinery of visual pigment regeneration, and the origin and early evolution of the vertebrate visual cycle is an unsolved mystery. Here we compare visual retinoid cycles between different photoreceptors of vertebrates, including rods, cones and non-visual photoreceptors, as well as between vertebrates and invertebrates. The visual cycle systems in ascidians, the closest living relatives of vertebrates, show an intermediate state between vertebrates and non-chordate invertebrates. The ascidian larva may use retinochrome-like opsin as the major isomerase. The entire process of the visual cycle can occur inside the photoreceptor cells with distinct subcellular compartmentalization, although the visual cycle components are also present in surrounding non-photoreceptor cells. The adult ascidian probably uses RPE65 isomerase, and trans -to- cis isomerization may occur in distinct cellular compartments, which is similar to the vertebrate situation. The complete transition to the sophisticated retinoid cycle of vertebrates may have required acquisition of new genes, such as interphotoreceptor retinoid-binding protein, and functional evolution of the visual cycle genes.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3