Foveate vision in deep–sea teleosts: a comparison of primary visual and olfactory inputs

Author:

Collin Shaun P.1,Lloyd Darren J.1,Wagner Hans–Joachim2

Affiliation:

1. Department of Zoology, The University of Western Australia, Nedlands 6907,Western Australia, Australia

2. Anatomisches Institut, Eberhard–Karls–UniversitätTübingen, Österbergstrasse 3, D–72074 Tübingen, Germany

Abstract

The relative importance of vision in a foveate group of alepocephalid teleosts is examined in the context of a deep–sea habitat beyond the penetration limits of sunlight. The large eyes of Conocara spp. possess deep convexiclivate foveae lined with Müller cells comprising radial shafts of intermediate filaments and horizontal processes. Photoreceptor cell (171.8 × 10 3 rods mm −2 ) and retinal ganglion cell (11.9 × 10 3 cells mm −2 ) densities peak within the foveal clivus and the perifoveal slopes, respectively, with a centro–peripheral gradient between 3:1 (photoreceptors) and over 20:1 (ganglion cells). The marked increase in retinal sampling localized in temporal retina, coupled with a high summation ratio (13:1), suggest that foveal vision optimizes both spatial resolving power and sensitivity in the binocular frontal visual field. The elongated optic nerve head is comprised of over 500 optic papillae, which join at the embryonic fissure to form a thin nervous sheet behind the eye. The optic nerve is divided into two axonal bundles; one receiving input from the fovea (only unmyelinated axons) and the other from non–specialized retinal regions (25% of axons are myelinated), both of which appear to be separated as they reach the visual centres of the central nervous system. Comparison of the number of primary (first–order) axonal pathways for the visual (a total of 63.4 × 10 6 rod photoreceptors) and olfactory (a total of 15.24 × 10 5 olfactory nerve axons) inputs shows a marked visual bias (ratio of 41:1). Coupled with the relative size of the optic tecta (44.0 mm 3 ) and olfactory bulbs (0.9 mm 3 ), vision appears to play a major role in the survival of these deep–sea teleosts and emphasizes that ecological and behavioural strategies account for significant variation in sensory brain structure.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolution of the visual system in ray-finned fishes;Visual Neuroscience;2023

2. Deep-sea fishes and their extreme adaptations;Reference Module in Life Sciences;2023

3. References;The Fovea;2022

4. Introduction: Optical properties of the retina;The Fovea;2022

5. Nonmammalian fovea;The Fovea;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3