Population growth rate as a basis for ecological risk assessment of toxic chemicals

Author:

Forbes Valery E.1,Calow Peter2

Affiliation:

1. Department of Life Sciences and Chemistry, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark

2. Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK

Abstract

Assessing the ecological risks of toxic chemicals is most often based on individual–level responses such as survival, reproduction or growth. Such an approach raises the following questions with regard to translating these measured effects into likely impacts on natural populations. (i) To what extent do individual–level variables underestimate or overestimate population–level responses? (ii) How do toxicant–caused changes in individual–level variables translate into changes in population dynamics for species with different life cycles? (iii) To what extent are these relationships complicated by population–density effects? These issues go to the heart of the ecological relevance of ecotoxicology and we have addressed them using the population growth rate as an integrating concept. Our analysis indicates that although the most sensitive individual–level variables are likely to be equally or more sensitive to increasing concentrations of toxic chemicals than population growth rate, they are difficult to identify a priori and, even if they could be identified, integrating impacts on key life–cycle variables via population growth rate analysis is nevertheless a more robust approach for assessing the ecological risks of chemicals. Populations living under density–dependent control may respond differently to toxic chemicals than exponentially growing populations, and greater care needs to be given to incorporating realistic density conditions (either experimentally or by simulation) into ecotoxicological test designs. It is impractical to expect full life–table studies, which record changes in survival, fecundity and development at defined intervals through the life cycle of organisms under specified conditions, for all relevant species, so we argue that population growth rate analysis should be used to provide guidance for a more pragmatic and ecologically sound approach to ecological risk assessment.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3