Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields

Author:

Long Stephen P123,Ainsworth Elizabeth A143,Leakey Andrew D.B3,Morgan Patrick B1

Affiliation:

1. Department of Plant Biology, University of Illinois379 Edward R. Madigan Laboratory, 1201 West Gregory, Urbana, IL 61801, USA

2. Department of Crop Science, University of IllinoisAW 101 Turner Hall, 1102 South Goodwin Avenue, Urbana, IL 61801, USA

3. Institute for Genomic Biology, University of Illinois04 ASL, 1207 West Gregory Drive, Urbana, IL 61801, USA

4. USDA-Agricultural Research Service, Photosynthesis Research UnitUrbana, IL 61801, USA

Abstract

Predictions of yield for the globe's major grain and legume arable crops suggest that, with a moderate temperature increase, production may increase in the temperate zone, but decline in the tropics. In total, global food supply may show little change. This security comes from inclusion of the direct effect of rising carbon dioxide (CO 2 ) concentration, [CO 2 ], which significantly stimulates yield by decreasing photorespiration in C 3 crops and transpiration in all crops. Evidence for a large response to [CO 2 ] is largely based on studies made within chambers at small scales, which would be considered unacceptable for standard agronomic trials of new cultivars or agrochemicals. Yet, predictions of the globe's future food security are based on such inadequate information. Free-Air Concentration Enrichment (FACE) technology now allows investigation of the effects of rising [CO 2 ] and ozone on field crops under fully open-air conditions at an agronomic scale. Experiments with rice, wheat, maize and soybean show smaller increases in yield than anticipated from studies in chambers. Experiments with increased ozone show large yield losses (20%), which are not accounted for in projections of global food security. These findings suggest that current projections of global food security are overoptimistic. The fertilization effect of CO 2 is less than that used in many models, while rising ozone will cause large yield losses in the Northern Hemisphere. Unfortunately, FACE studies have been limited in geographical extent and interactive effects of CO 2 , ozone and temperature have yet to be studied. Without more extensive study of the effects of these changes at an agronomic scale in the open air, our ever-more sophisticated models will continue to have feet of clay.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3