SARS molecular epidemiology: a Chinese fairy tale of controlling an emerging zoonotic disease in the genomics era

Author:

Zhao Guo-ping1

Affiliation:

1. Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at ShanghaiBuilding 1, 250 Bi-Bo Road, Zhangjiang HiTech Park, Pudong, Shanghai 201203, People's Republic of China

Abstract

Severe acute respiratory syndrome (SARS) was the first natural disaster that challenged the Chinese people at the beginning of the twenty-first century. It was caused by a novel animal coronavirus, never recognized or characterized before. This SARS coronavirus (SARS-CoV) exploited opportunities provided by ‘wet markets’ in southern China to adapt to the palm civet and human. Under the positive selection pressure of human host, certain mutated lineages of the virus became readily transmissible between humans and thus caused the epidemic of 2002–2003. This review will provide first-hand information, particularly from Guangdong, China, about the initial epidemiology, the identification of the aetiological agent of the disease, the molecular evolution study of the virus, the finding of SARS-like CoV in horseshoe bats and the mechanistic analysis for the cross-host tropism transition. The substantial scientific contributions made by the Chinese scientists towards understanding the virus and the disease will be emphasized. Along with the description of the scientific discoveries and analyses, the significant impact of these researches upon the public health measurement or regulations will be highlighted. It is aimed to appreciate the concerted and coordinated global response that controlled SARS within a short period of time as well as the research strategy and methodology developed along with this process, which can be applied in response to other public health challenges, particularly the future emerging/re-merging infectious diseases.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Global Perspective on Medicinal Plants and Phytochemicals with Antiviral Potentials in the Respiratory System;Anti-Infective Agents;2023-06

2. Epidemiology and virology of SARS-CoV-2;Clinical Management of Pediatric COVID-19;2023

3. Virucidal activity of nanomaterials for the viruses: a SARS-CoV-2 case study;Smart Nanomaterials to Combat the Spread of Viral Infections;2023

4. Severe Acute Respiratory Syndrome Associated Corona Virus [SARS-CoV];Emerging Human Viral Diseases, Volume I;2023

5. SARS-CoV-2 Transmission by Arthropod Vectors: A Scoping Review;BioMed Research International;2022-08-08

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3