Ascorbate biosynthesis and function in photoprotection

Author:

Smirnoff Nicholas1

Affiliation:

1. School of Biological Sciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK ()

Abstract

Ascorbate (vitamin C) can reach very high concentrations in chloroplasts (20–300 mM).The pool size in leaves and chloroplasts increases during acclimation to high light intensity and the highest concentrations recorded are in high alpine plants. Multiple functions for ascorbate in photosynthesis have been proposed, including scavenging of active oxygen species generated by oxygen photoreduction and photorespiration, regeneration of α–tocopherol from α–tocopheryl radicals, cofactor for violaxanthin de–epoxidase and donation of electrons to photosystem II. Hydrogen peroxide scavenging is catalysed by ascorbate peroxidase (Mehler peroxidase reaction) and the subsequent regeneration of ascorbate by reductant derived from photosystem I allows electron flow in addition to that used for CO2assimilation. Ascorbate is synthesized from guanosine diphosphate–mannoseviaL–galactose and L–galactono–1,4–lactone. The last step, catalysed by L–galactono–1,4–lactone dehydrogenase, is located on the inner mitochondrial membrane and uses cytochromecas electron acceptor. L–galactono–1,4–lactone oxidation to ascorbate by intact leaves is faster in high–light acclimated leaves and is also enhanced by high light, suggesting that this step contributes to the control of pool size by light. Ascorbate–deficientArabidopsis thaliana vtcmutants are hypersensitive to a number of oxidative stresses including ozone and ultraviolet B radiation. Further investigation of these mutants shows that they have reduced zeaxanthin–dependent non–photochemical quenching, confirming that ascorbate is the cofactor for violaxanthin de–epoxidase and that availability of thylakoid lumen ascorbate could limit this reaction. The vtc mutants are also more sensitive to photooxidation imposed by combined high light and salt treatments.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 264 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3