T–cell anergy and peripheral T–cell tolerance

Author:

Lechler Robert1,Chai Jian-Guo1,Marelli-Berg Federica1,Lombardi Giovanna1

Affiliation:

1. Department of Immunology, Imperial College School of Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK

Abstract

The discovery that T–cell recognition of antigen can have distinct outcomes has advanced understanding of peripheral T–cell tolerance, and opened up new possibilities in immunotherapy. Anergy is one such outcome, and results from partial T–cell activation. This can arise either due to subtle alteration of the antigen, leading to a lower–affinity cognate interaction, or due to a lack of adequate co–stimulation. The signalling defects in anergic T cells are partially defined, and suggest that T–cell receptor (TCR) proximal, as well as downstream defects negatively regulate the anergic T cell's ability to be activated. Most importantly, the use of TCR–transgenic mice has provided compelling evidence that anergy is an in vivo phenomenon, and not merely an in vitro artefact. These findings raise the question as to whether anergic T cells have any biological function. Studies in rodents and in man suggest that anergic T cells acquire regulatory properties; the regulatory effects of anergic T cells require cell to cell contact, and appear to be mediated by inhibition of antigen–presenting cell immunogenicity. Close similarities exist between anergic T cells, and the recently defined CD4 + CD25 + population of spontaneously arising regulatory cells that serve to inhibit autoimmunity in mice. Taken together, these findings suggest that a spectrum of regulatory T cells exists. At one end of the spectrum are cells, such as anergic and CD4 + CD25 + T cells, which regulate via cell–to–cell contact. At the other end of the spectrum are cells which secrete antiinflammatory cytokines such as interleukin 10 and transforming growth factor–β. The challenge is to devise strategies that reliably induce T–cell anergy in vivo , as a means of inhibiting immunity to allo– and autoantigens.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3