Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances?

Author:

Kurz Werner A1,Stinson Graham1,Rampley Greg1

Affiliation:

1. Natural Resources Canada, Canadian Forest Service, Pacific Forestry CentreVictoria, British Columbia, Canada V8Z 1M5

Abstract

To understand how boreal forest carbon (C) dynamics might respond to anticipated climatic changes, we must consider two important processes. First, projected climatic changes are expected to increase the frequency of fire and other natural disturbances that would change the forest age-class structure and reduce forest C stocks at the landscape level. Second, global change may result in increased net primary production (NPP). Could higher NPP offset anticipated C losses resulting from increased disturbances? We used the Carbon Budget Model of the Canadian Forest Sector to simulate rate changes in disturbance, growth and decomposition on a hypothetical boreal forest landscape and to explore the impacts of these changes on landscape-level forest C budgets. We found that significant increases in net ecosystem production (NEP) would be required to balance C losses from increased natural disturbance rates. Moreover, increases in NEP would have to be sustained over several decades and be widespread across the landscape. Increased NEP can only be realized when NPP is enhanced relative to heterotrophic respiration. This study indicates that boreal forest C stocks may decline as a result of climate change because it would be difficult for enhanced growth to offset C losses resulting from anticipated increases in disturbances.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3