Genesis of embryonic stem cells

Author:

Buehr Mia1,Smith Austin1

Affiliation:

1. Institute for Stem Cell Research, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JQ, UK

Abstract

Embryonic stem (ES) cells are permanent pluripotent stem cell lines established from pre–implantation mouse embryos. There is currently great interest in the potential therapeutic applications of analogous cells derived from human embryos. The isolation of ES cells is commonly presented as a straightforward transfer of cells in the early embryo into culture. In reality, however, continuous expansion of pluripotent cells does not occur in vivo, and in vitro is the exception rather than the norm. Both genetic and epigenetic factors influence the ability to derive ES cells. We have tracked the expression of a key marker and determinant of pluripotency, the transcription factor Oct–4, in primary cultures of mouse epiblasts and used this to assay the effect of experimental manipulations on the maintenance of a pluripotent cell compartment. We find that expression of Oct–4 is often lost prior to overt cytodifferentiation of the epiblast. The rate and extent of Oct–4 extinction varies with genetic background. We report that treatment with the MAP kinase/ERK kinase inhibitor PD98059, which suppresses activation of the mitogen–activated protein kinases Erk1 and Erk2, results in increased persistence of Oct–4–expressing cells. Oct–4 expression is also relatively sustained in cultures of diapause embryos and of isolated inner cell masses. Combination of all three conditions allowed the derivation of germline–competent ES cells from the normally refractory CBA mouse strain. These findings suggest that the genesis of an ES cell is a relatively complex process requiring epigenetic modulation of key gene expression over a brief time–window. Procedures that extend this time–window and/or directly regulate the critical genes should increase the efficiency of ES cell derivation.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3