A likelihood framework to analyse phyletic patterns

Author:

Cohen Ofir1,Rubinstein Nimrod D1,Stern Adi1,Gophna Uri2,Pupko Tal1

Affiliation:

1. Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel Aviv 69978, Israel

2. Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel Aviv 69978, Israel

Abstract

Probabilistic evolutionary models revolutionized our capability to extract biological insights from sequence data. While these models accurately describe the stochastic processes of site-specific substitutions, single-base substitutions represent only a fraction of all the events that shape genomes. Specifically, in microbes, events in which entire genes are gained (e.g. via horizontal gene transfer) and lost play a pivotal evolutionary role. In this research, we present a novel likelihood-based evolutionary model for gene gains and losses, and use it to analyse genome-wide patterns of the presence and absence of gene families. The model assumes a Markovian stochastic process, where gains and losses are represented by the transition between presence and absence, respectively, given an underlying phylogenetic tree. To account for differences in the rates of gain and loss of different gene families, we assume among-gene family rate variability, thus allowing for more accurate description of the data. Using the Bayesian approach, we estimated an evolutionary rate for each gene family. Simulation studies demonstrated that our methodology accurately infers these rates. Our methodology was applied to analyse a large corpus of data, consisting of 4873 gene families spanning 63 species and revealed novel insights regarding the evolutionary nature of genome-wide gain and loss dynamics.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3