Synaptic plasticity in animal models of early Alzheimer's disease

Author:

Rowan Michael J.1,Klyubin Igor1,Cullen William K.1,Anwyl Roger2

Affiliation:

1. Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland

2. Department of Physiology, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland

Abstract

Amyloid β-protein (Aβ) is believed to be a primary cause of Alzheimer's disease (AD). Recent research has examined the potential importance of soluble species of Aβ in synaptic dysfunction, long before fibrillary Aβ is deposited and neurodegenerative changes occur. Hippocampal excitatory synaptic transmission and plasticity are disrupted in transgenic mice overexpressing human amyloid precursor protein with early onset familial AD mutations, and in rats after exogenous application of synthetic Aβ both in vitro and in vivo . Recently, naturally produced soluble Aβ was shown to block the persistence of long-term potentiation (LTP) in the intact hippocampus. Sub-nanomolar concentrations of oligomeric Aβ were sufficient to inhibit late LTP, pointing to a possible reason for the sensitivity of hippocampus-dependent memory to impairment in the early preclinical stages of AD. Having identified the active species of Aβ that can play havoc with synaptic plasticity, it is hoped that new ways of targeting early AD can be developed.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 176 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3