Methane, oxygen, photosynthesis, rubisco and the regulation of the air through time

Author:

Nisbet Euan G1,Nisbet R. Ellen R2

Affiliation:

1. Department of Geology, Royal Holloway, University of LondonEgham, Surrey TW20 0EX, UK

2. Department of Biochemistry, University of CambridgeCambridge CB2 1QW, UK

Abstract

Rubisco I's specificity, which today may be almost perfectly tuned to the task of cultivating the global garden, controlled the balance of carbon gases and O 2 in the Precambrian ocean and hence, by equilibration, in the air. Control of CO 2 and O 2 by rubisco I, coupled with CH 4 from methanogens, has for the past 2.9 Ga directed the global greenhouse warming, which maintains liquid oceans and sustains microbial ecology. Both rubisco compensation controls and the danger of greenhouse runaway (e.g. glaciation) put limits on biological productivity. Rubisco may sustain the air in either of two permissible stable states: either an anoxic system with greenhouse warming supported by both high methane mixing ratios as well as carbon dioxide, or an oxygen-rich system in which CO 2 largely fulfils the role of managing greenhouse gas, and in which methane is necessarily only a trace greenhouse gas, as is N 2 O. Transition from the anoxic to the oxic state risks glaciation. CO 2 build-up during a global snowball may be an essential precursor to a CO 2 -dominated greenhouse with high levels of atmospheric O 2 . Photosynthetic and greenhouse-controlling competitions between marine algae, cyanobacteria, and terrestrial C3 and C4 plants may collectively set the CO 2  : O 2 ratio of the modern atmosphere (last few million years ago in a mainly glacial epoch), maximizing the productivity close to rubisco compensation and glacial limits.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3