KCNJ11 knockout morula re-engineered by stem cell diploid aggregation

Author:

Nelson Timothy J1,Martinez-Fernandez Almudena1,Terzic Andre1

Affiliation:

1. Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo ClinicRochester, MN 55905, USA

Abstract

KCNJ11 -encoded Kir6.2 assembles with ATP-binding cassette sulphonylurea receptors to generate ATP-sensitive K + (K ATP ) channel complexes. Expressed in tissues with dynamic metabolic flux, these evolutionarily conserved yet structurally and functionally unique heteromultimers serve as high-fidelity rheostats that adjust membrane potential-dependent cell functions to match energetic demand. Genetic defects in channel subunits disrupt the cellular homeostatic response to environmental stress, compromising organ tolerance in the adult. As maladaptation characterizes malignant K ATP channelopathies, establishment of platforms to examine progression of K ATP channel-dependent adaptive behaviour is warranted. Chimeras provide a powerful tool to assay the contribution of genetic variance to stress intolerance during prenatal or post-natal development. Here, KCNJ11 K ATP channel gene knockout↔wild-type chimeras were engineered through diploid aggregation. Integration of wild-type embryonic stem cells into zona pellucida-denuded morula derived from knockout embryos achieved varying degrees of incorporation of stress-tolerant tissue within the K ATP channel-deficient background. Despite the stress-vulnerable phenotype of the knockout, ex vivo derived mosaic blastocysts tolerated intrauterine transfer and implantation, followed by full-term embryonic development in pseudopregnant surrogates to produce live chimeric offspring. The development of adult chimerism from the knockout↔wild-type mosaic embryo offers thereby a new paradigm to probe the ecogenetic control of the K ATP channel-dependent stress response.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3