The potency of different serotonergic agonists in counteracting opioid evoked cardiorespiratory disturbances

Author:

Dutschmann M.1,Waki H.2,Manzke T.3,Simms A. E.4,Pickering A. E.5,Richter D. W.6,Paton J. F. R.5

Affiliation:

1. Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK

2. Department of Physiology, Wakayama Medical University School of Medicine, 811-1, Kimiidera, Wakayama 641-8509, Japan

3. Department of Child and Adolescent Psychiatry, University of Göttingen, Von-Siebold-Strasse 5, 37075 Göttingen, Germany

4. Department of Physiology, University of Melbourne, Victoria 3010, Australia

5. Department of Physiology and Pharmacology, Bristol Heart Institute, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK

6. Department of Neuro- and Sensory Physiology, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany

Abstract

Serotonin receptor (5-HTR) agonists that target 5-HT 4(a) R and 5-HT 1A R can reverse μ-opioid receptor (μ-OR)-evoked respiratory depression. Here, we have tested whether such rescuing by serotonin agonists also applies to the cardiovascular system. In working heart–brainstem preparations in situ , we have recorded phrenic nerve activity, thoracic sympathetic chain activity (SCA), vascular resistance and heart rate (HR) and in conscious rats, diaphragmatic electromyogram, arterial blood pressure (BP) and HR via radio-telemetry. In addition, the distribution of 5-HT 4(a) R and 5-HT 1A R in ponto-medullary cardiorespiratory networks was identified using histochemistry. Systemic administration of the μ-OR agonist fentanyl in situ decreased HR, vascular resistance, SCA and phrenic nerve activity. Subsequent application of the 5-HT 1A R agonist 8-OH-DPAT further enhanced bradycardia, but partially compensated the decrease in vascular resistance, sympathetic activity and restored breathing. By contrast, the 5-HT 4(a) R agonist RS67333 further decreased vascular resistance, HR and sympathetic activity, but partially rescued breathing. In conscious rats, administration of remifentanyl caused severe respiratory depression, a decrease in mean BP accompanied by pronounced bradyarrhythmia. 8-OH-DPAT restored breathing and prevented the bradyarrhythmia; however, BP and HR remained below baseline. In contrast, RS67333 further suppressed cardiovascular functions in vivo and only partially recovered breathing in some cases. The better recovery of μ-OR cardiorespiratory disturbance by 5-HT 1A R than 5-HT 4(a) R is supported by the finding that 5-HT 1A R was more densely expressed in key brainstem nuclei for cardiorespiratory control compared with 5-HT 4(a) R. We conclude that during treatment of severe pain, 5-HT 1A R agonists may provide a useful tool to counteract opioid-mediated cardiorespiratory disturbances.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3