Ultra high-resolution biomechanics suggest that substructures within insect mechanosensors decisively affect their sensitivity

Author:

Dinges Gesa F.1ORCID,Bockemühl Till1ORCID,Iacoviello Francesco2ORCID,Shearing Paul R.2ORCID,Büschges Ansgar1ORCID,Blanke Alexander13ORCID

Affiliation:

1. Institute of Zoology, University of Cologne, 50674 Cologne, Germany

2. Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, WC1DE 6BT London, UK

3. Institute of Evolutionary Biology and Ecology, University of Bonn, 53121 Bonn, Germany

Abstract

Insect load sensors, called campaniform sensilla (CS), measure strain changes within the cuticle of appendages. This mechanotransduction provides the neuromuscular system with feedback for posture and locomotion. Owing to their diverse morphology and arrangement, CS can encode different strain directions. We used nano-computed tomography and finite-element analysis to investigate how different CS morphologies within one location—the femoral CS field of the leg in the fruit fly Drosophila —interact under load. By investigating the influence of CS substructures' material properties during simulated limb displacement with naturalistic forces, we could show that CS substructures (i.e. socket and collar) influence strain distribution throughout the whole CS field. Altered socket and collar elastic moduli resulted in 5% relative differences in displacement, and the artificial removal of all sockets caused differences greater than 20% in cap displacement. Apparently, CS sockets support the distribution of distal strain to more proximal CS, while collars alter CS displacement more locally. Harder sockets can increase or decrease CS displacement depending on sensor location. Furthermore, high-resolution imaging revealed that sockets are interconnected in subcuticular rows. In summary, the sensitivity of individual CS is dependent on the configuration of other CS and their substructures.

Funder

Royal Academy of Engineering

Engineering and Physical Sciences Research Council

Deutsche Forschungsgemeinschaft

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3