Latent evolutionary signatures: a general framework for analysing music and cultural evolution

Author:

Warrell Jonathan12ORCID,Salichos Leonidas1234,Gancz Michael5,Gerstein Mark B.126ORCID

Affiliation:

1. Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA

2. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA

3. Department of Biological and Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA

4. Biomedical Data Science Center, New York Institute of Technology, New York, NY 10023, USA

5. Department of Music, Yale University, New Haven, CT 06520, USA

6. Department of Computer Science, Yale University, New Haven, CT 06520, USA

Abstract

Cultural processes of change bear many resemblances to biological evolution. The underlying units of non-biological evolution have, however, remained elusive, especially in the domain of music. Here, we introduce a general framework to jointly identify underlying units and their associated evolutionary processes. We model musical styles and principles of organization in dimensions such as harmony and form as following an evolutionary process. Furthermore, we propose that such processes can be identified by extracting latent evolutionary signatures from musical corpora, analogously to identifying mutational signatures in genomics. These signatures provide a latent embedding for each song or musical piece. We develop a deep generative architecture for our model, which can be viewed as a type of variational autoencoder with an evolutionary prior constraining the latent space; specifically, the embeddings for each song are tied together via an energy-based prior, which encourages songs close in evolutionary space to share similar representations. As illustration, we analyse songs from the McGill Billboard dataset. We find frequent chord transitions and formal repetition schemes and identify latent evolutionary signatures related to these features. Finally, we show that the latent evolutionary representations learned by our model outperform non-evolutionary representations in such tasks as period and genre prediction.

Publisher

The Royal Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3