Generalizable fully automated multi-label segmentation of four-chamber view echocardiograms based on deep convolutional adversarial networks

Author:

Arafati Arghavan1ORCID,Morisawa Daisuke1,Avendi Michael R.12,Amini M. Reza3,Assadi Ramin A.4,Jafarkhani Hamid2ORCID,Kheradvar Arash1ORCID

Affiliation:

1. The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, 2410 Engineering Hall, Irvine, CA 92697-2730, USA

2. Center for Pervasive Communications and Computing, University of California, 4217 Engineering Hall, Irvine, CA 92697-2700, USA

3. Loma Linda University Medical Center, Loma Linda, CA 92354, USA

4. Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA

Abstract

A major issue in translation of the artificial intelligence platforms for automatic segmentation of echocardiograms to clinics is their generalizability. The present study introduces and verifies a novel generalizable and efficient fully automatic multi-label segmentation method for four-chamber view echocardiograms based on deep fully convolutional networks (FCNs) and adversarial training. For the first time, we used generative adversarial networks for pixel classification training, a novel method in machine learning not currently used for cardiac imaging, to overcome the generalization problem. The method's performance was validated against manual segmentations as the ground-truth. Furthermore, to verify our method's generalizability in comparison with other existing techniques, we compared our method's performance with a state-of-the-art method on our dataset in addition to an independent dataset of 450 patients from the CAMUS (cardiac acquisitions for multi-structure ultrasound segmentation) challenge. On our test dataset, automatic segmentation of all four chambers achieved a dice metric of 92.1%, 86.3%, 89.6% and 91.4% for LV, RV, LA and RA, respectively. LV volumes' correlation between automatic and manual segmentation were 0.94 and 0.93 for end-diastolic volume and end-systolic volume, respectively. Excellent agreement with chambers’ reference contours and significant improvement over previous FCN-based methods suggest that generative adversarial networks for pixel classification training can effectively design generalizable fully automatic FCN-based networks for four-chamber segmentation of echocardiograms even with limited number of training data.

Funder

American Heart Association

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3