Mitral valve leaflet response to ischaemic mitral regurgitation: from gene expression to tissue remodelling

Author:

Howsmon Daniel P.1ORCID,Rego Bruno V.1ORCID,Castillero Estibaliz2ORCID,Ayoub Salma1ORCID,Khalighi Amir H.1ORCID,Gorman Robert C.3,Gorman Joseph H.3,Ferrari Giovanni2ORCID,Sacks Michael S.1ORCID

Affiliation:

1. James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA

2. Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA

3. Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Abstract

Ischaemic mitral regurgitation (IMR), a frequent complication following myocardial infarction (MI), leads to higher mortality and poor clinical prognosis if untreated. Accumulating evidence suggests that mitral valve (MV) leaflets actively remodel post MI, and this remodelling increases both the severity of IMR and the occurrence of MV repair failures. However, the mechanisms of extracellular matrix maintenance and modulation by MV interstitial cells (MVICs) and their impact on MV leaflet tissue integrity and repair failure remain largely unknown. Herein, we sought to elucidate the multiscale behaviour of IMR-induced MV remodelling using an established ovine model. Leaflet tissue at eight weeks post MI exhibited significant permanent plastic radial deformation, eliminating mechanical anisotropy, accompanied by altered leaflet composition. Interestingly, no changes in effective collagen fibre modulus were observed, with MVICs slightly rounder, at eight weeks post MI. RNA sequencing indicated that YAP-induced genes were elevated at four weeks post MI, indicating elevated mechanotransduction. Genes related to extracellular matrix organization were downregulated at four weeks post MI when IMR occurred. Transcriptomic changes returned to baseline by eight weeks post MI. This multiscale study suggests that IMR induces plastic deformation of the MV with no functional damage to the collagen fibres, providing crucial information for computational simulations of the MV in IMR.

Funder

National Science Foundation

American Heart Association

Harry S. Moss Heart Trust

National Heart, Lung, and Blood Institute

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3