Hypoglycaemia combined with mild hypokalaemia reduces the heart rate and causes abnormal pacemaker activity in a computational model of a human sinoatrial cell

Author:

Bernjak Alan12ORCID,Iqbal Ahmed13ORCID,Heller Simon R.13ORCID,Clayton Richard H.24ORCID

Affiliation:

1. Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK

2. INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK

3. Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK

4. Department of Computer Science, University of Sheffield, Sheffield, UK

Abstract

Low blood glucose, hypoglycaemia, has been implicated as a possible contributing factor to sudden cardiac death (SCD) in people with diabetes but it is challenging to investigate in clinical studies. We hypothesized the effects of hypoglycaemia on the sinoatrial node (SAN) in the heart to be a candidate mechanism and adapted a computational model of the human SAN action potential developed by Fabbri et al. , to investigate the effects of hypoglycaemia on the pacemaker rate. Using Latin hypercube sampling, we combined the effects of low glucose (LG) on the human ether-a-go-go-related gene channel with reduced blood potassium, hypokalaemia, and added sympathetic and parasympathetic stimulus. We showed that hypoglycaemia on its own causes a small decrease in heart rate but there was also a marked decrease in heart rate when combined with hypokalaemia. The effect of the sympathetic stimulus was diminished, causing a smaller increase in heart rate, with LG and hypokalaemia compared to normoglycaemia. By contrast, the effect of the parasympathetic stimulus was enhanced, causing a greater decrease in heart rate. We therefore demonstrate a potential mechanistic explanation for hypoglycaemia-induced bradycardia and show that sinus arrest is a plausible mechanism for SCD in people with diabetes.

Funder

National Institute of Health Research, Academic Clinical Lectureship

National Institute of Health Research, Senior Investigator Award to SRH

British Heart Foundation

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3