A novel framework based on a data-driven approach for modelling the behaviour of organisms in chemical plume tracing

Author:

Okajima Kei1ORCID,Shigaki Shunsuke2ORCID,Suko Takanobu3ORCID,Luong Duc-Nhat3ORCID,Hernandez Reyes Cesar3ORCID,Hattori Yuya4ORCID,Sanada Kazushi5ORCID,Kurabayashi Daisuke3ORCID

Affiliation:

1. Department of Mechanical Engineering, Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa, Japan

2. Department of System Innovation, Osaka University, Toyonaka, Osaka, Japan

3. Department of Control and System Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan

4. Department of Electrical Engineering and Information Science, National Institute of Technology, Kure College, Kure, Hiroshima, Japan

5. Division of Systems Research Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan

Abstract

We propose a data-driven approach for modelling an organism's behaviour instead of conventional model-based strategies in chemical plume tracing (CPT). CPT models based on this approach show promise in faithfully reproducing organisms’ CPT behaviour. To construct the data-driven CPT model, a training dataset of the odour stimuli input toward the organism is needed, along with an output of the organism’s CPT behaviour. To this end, we constructed a measurement system comprising an array of alcohol sensors for the measurement of the input and a camera for tracking the output in a real scenario. Then, we determined a transfer function describing the input–output relationship as a stochastic process by applying Gaussian process regression, and established the data-driven CPT model based on measurements of the organism’s CPT behaviour. Through CPT experiments in simulations and a real environment, we evaluated the performance of the data-driven CPT model and compared its success rate with those obtained from conventional model-based strategies. As a result, the proposed data-driven CPT model demonstrated a better success rate than those obtained from conventional model-based strategies. Moreover, we considered that the data-driven CPT model could reflect the aspect of an organism’s adaptability that modulated its behaviour with respect to the surrounding environment. However, these useful results came from the CPT experiments conducted in simple settings of simulations and a real environment. If making the condition of the CPT experiments more complex, we confirmed that the data-driven CPT model would be less effective for locating an odour source. In this way, this paper not only poses major contributions toward the development of a novel framework based on a data-driven approach for modelling an organism’s CPT behaviour, but also displays a research limitation of a data-driven approach at this stage.

Funder

Japan Society for the Promotion of Science

JKA Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3