Layered assemblers for scalable parallel integration

Author:

Hiller Jonathan1,Mici Joni2ORCID,Lipson Hod13

Affiliation:

1. School of Mechanical and Aerospace Engineering, Ithaca, NY 14853, USA

2. Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA

3. Computing and Information Science, Cornell University, Ithaca, NY 14853, USA

Abstract

Many complex natural and artificial systems are composed of large numbers of elementary building blocks, such as organisms made of many biological cells or processors made of many electronic transistors. This modular substrate is essential to the evolution of biological and technological complexity, but has been difficult to replicate for mechanical systems. This study seeks to answer if layered assembly can engender exponential gains in the speed and efficacy of block or cell-based manufacturing processes. A key challenge is how to deterministically assemble large numbers of small building blocks in a scalable manner. Here, we describe two new layered assembly principles that allow assembly faster than linear time, integrating n modules in O( n 2/3 ) and O( n 1/3 ) time: one process uses a novel opto-capillary effect to selectively deposit entire layers of building blocks at a time, and a second process jets building block rows in rapid succession. We demonstrate the fabrication of multi-component structures out of up to 20 000 millimetre scale spherical building blocks in 3 h. While these building blocks and structures are still simple, we suggest that scalable layered assembly approaches, combined with a growing repertoire of standardized passive and active building blocks could help bridge the meso-scale assembly gap, and open the door to the fabrication of increasingly complex, adaptive and recyclable systems.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference31 articles.

1. Langford W Ghassaei A Gershenfeld N. 2016 Automated assembly of electronic digital materials. In International Manufacturing Science and Engineering Conference vol. 2 p. V002T01A013. New York NY: ASME. (doi:10.1115/MSEC2016-8627)

2. Self-Assembly at All Scales

3. Design and self-assembly of two-dimensional DNA crystals

4. Design and Self-Assembly of Open, Regular, 3D Mesostructures

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Magnetically Assembled Electronic Digital Materials;2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS);2022-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3