Raptor wing morphing with flight speed

Author:

Cheney Jorn A.1ORCID,Stevenson Jonathan P. J.2ORCID,Durston Nicholas E.2ORCID,Maeda Masateru1ORCID,Song Jialei13ORCID,Megson-Smith David A.4ORCID,Windsor Shane P.2ORCID,Usherwood James R.1ORCID,Bomphrey Richard J.1ORCID

Affiliation:

1. Structure and Motional Laboratory, Royal Veterinary College, Hatfield AL9 7TA, UK

2. Department of Aerospace Engineering, University of Bristol, Bristol BS8 1TR, UK

3. School of Mechanical Engineering, Dongguan University of Technology, Guangdong, People's Republic of China

4. Interface Analysis Centre, School of Physics, University of Bristol, Bristol BS8 1TL, UK

Abstract

In gliding flight, birds morph their wings and tails to control their flight trajectory and speed. Using high-resolution videogrammetry, we reconstructed accurate and detailed three-dimensional geometries of gliding flights for three raptors (barn owl, Tyto alba ; tawny owl, Strix aluco , and goshawk, Accipiter gentilis ). Wing shapes were highly repeatable and shoulder actuation was a key component of reconfiguring the overall planform and controlling angle of attack. The three birds shared common spanwise patterns of wing twist, an inverse relationship between twist and peak camber, and held their wings depressed below their shoulder in an anhedral configuration. With increased speed, all three birds tended to reduce camber throughout the wing, and their wings bent in a saddle-shape pattern. A number of morphing features suggest that the coordinated movements of the wing and tail support efficient flight, and that the tail may act to modulate wing camber through indirect aeroelastic control.

Funder

Biotechnology and Biological Sciences Research Council

Wellcome Trust

H2020 European Research Council

Air Force Office of Scientific Research

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3