Springtail coloration at a finer scale: mechanisms behind vibrant collembolan metallic colours

Author:

Vanthournout Bram1ORCID,Rousaki Anastasia2,Parmentier Thomas34ORCID,Janssens Frans5,Mertens Johan4,Vandenabeele Peter26,D'Alba Liliana1ORCID,Shawkey Matthew1ORCID

Affiliation:

1. Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ledeganckstraat 35, Ghent 9000, Belgium

2. Raman Spectroscopy Research Group, Department of Chemistry, Ghent University, Krijgslaan 281, S12, B-9000 Ghent, Belgium

3. Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, Namur University, Rue de Bruxelles 61, 5000 Namur, Belgium

4. Terrestrial Ecology Unit, Department of Biology, Ghent University, Ledeganckstraat 35, Ghent 9000, Belgium

5. Department of Biology, Antwerp University, Antwerp B-2020, Belgium

6. Archaeometry Research Group, Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, B-9000 Ghent, Belgium

Abstract

The mechanisms and evolution of metallic structural colours are of both fundamental and applied interest, yet most work in arthropods has focused on derived butterflies and beetles with distinct hues. In particular, basal hexapods—groups with many scaled, metallic representatives—are currently poorly studied and controversial, with some recent studies suggesting either that thin-film (lamina thickness) or diffraction grating (longitudinal ridges, cross-ribs) elements produce these colours in early Lepidoptera and one springtail (Collembola) species. Especially the collembolan basal scale design, consisting of a single lamina and longitudinal ridges with smooth valleys lacking cross-ribs, makes them an interesting group to explore the mechanisms of metallic coloration. Using microspectroscopy, Raman spectroscopy, electron microscopy and finite-difference time-domain optical modelling, we investigated scale colour in seven springtail species that show clear metallic coloration. Reflectance spectra are largely uniform and exhibit a broadband metallic/golden coloration with peaks in the violet/blue region. Our simulations confirm the role of the longitudinal ridges, working in conjunction with thin-film effects to produce a broadband metallic coloration. Broadband coloration occurs through spatial colour mixing, which probably results from nanoscale variation in scale thickness and ridge height and distance. These results provide crucial insights into the colour production mechanisms in a basal scale design and highlight the need for further investigation of scaled, basal arthropods.

Funder

Special Research Fund - UGent

Research Foundation – Flanders

Air Force Office of Scientific Research

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3