Transport collapse in dynamically evolving networks

Author:

Berthelot Geoffroy12ORCID,Tupikina Liubov345ORCID,Kang Min-Yeong6,Dedecker Jérôme7ORCID,Grebenkov Denis8ORCID

Affiliation:

1. Institut National du Sport, de l’Expertise et de la Performance (INSEP), Paris 75012, France

2. Research Laboratory for Interdisciplinary Studies (RELAIS), Paris 75012, France

3. The Center for Research and Interdisciplinarity, Paris, 75004 France

4. Nokia Bell Labs Nokia, Nozay, France

5. Learning Planet Institute, F-75004, Paris, France

6. Medipixel, Inc., Seoul 04037, South Korea

7. Université Paris Cité, Laboratoire MAP5 and CNRS UMR 8145, 75016 Paris, France

8. Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS—Ecole Polytechnique, IP Paris, Palaiseau 91128, France

Abstract

Transport in complex networks can describe a variety of natural and human-engineered processes including biological, societal and technological ones. However, how the properties of the source and drain nodes can affect transport subject to random failures, attacks or maintenance optimization in the network remain unknown. In this article, the effects of both the distance between the source and drain nodes and the degree of the source node on the time of transport collapse are studied in scale-free and lattice-based transport networks. These effects are numerically evaluated for two strategies, which employ either transport-based or random link removal. Scale-free networks with small distances are found to result in larger times of collapse. In lattice-based networks, both the dimension and boundary conditions are shown to have a major effect on the time of collapse. We also show that adding a direct link between the source and the drain increases the robustness of scale-free networks when subject to random link removals. Interestingly, the distribution of the times of collapse is then similar to the one of lattice-based networks.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3