Early exclusion leads to cyclical cooperation in repeated group interactions

Author:

Liu Linjie12ORCID,Xiao Zhilong2,Chen Xiaojie2ORCID,Szolnoki Attila3ORCID

Affiliation:

1. College of Science, Northwest A & F University, Yangling 712100, People’s Republic of China

2. School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China

3. Institute of Technical Physics and Materials Science, Centre for Energy Research, PO Box 49, Budapest 1525, Hungary

Abstract

Explaining the emergence and maintenance of cooperation among selfish individuals from an evolutionary perspective remains a grand challenge in biology, economy and social sciences. Social exclusion is believed to be an answer to this conundrum. However, previously related studies often assume one-shot interactions and ignore how free-riding is identified, which seem to be too idealistic. In this work, we consider repeated interactions where excluders need to pay a monitoring cost to identify free-riders for exclusion and free-riders cannot participate in the following possible game interactions once they are identified and excluded by excluders in the repeated interaction process. We reveal that the introduction of such exclusion can prevent the breakdown of cooperation in repeated group interactions. In particular, we demonstrate that an evolutionary oscillation among cooperators, defectors and excluders can appear in infinitely large populations when early exclusion is implemented. In addition, we find that the population spends most of the time in states where cooperators dominate for early exclusion when stochastic mutation–selection is considered in finite populations. Our results highlight that early exclusion is successful in solving the mentioned enigma of cooperation in repeated group interactions.

Funder

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3