Sequential experimental design for predator–prey functional response experiments

Author:

Moffat Hayden12ORCID,Hainy Markus13,Papanikolaou Nikos E.456,Drovandi Christopher12ORCID

Affiliation:

1. School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia

2. ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), Queensland University of Technology, Brisbane, Australia

3. Institute of Applied Statistics, Johannes Kepler University, Linz, Austria

4. Directorate of Plant Protection, Greek Ministry of Rural Development and Food, Athens, Greece

5. Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece

6. Benaki Phytopathological Institute, Athens, Greece

Abstract

Understanding functional response within a predator–prey dynamic is a cornerstone for many quantitative ecological studies. Over the past 60 years, the methodology for modelling functional response has gradually transitioned from the classic mechanistic models to more statistically oriented models. To obtain inferences on these statistical models, a substantial number of experiments need to be conducted. The obvious disadvantages of collecting this volume of data include cost, time and the sacrificing of animals. Therefore, optimally designed experiments are useful as they may reduce the total number of experimental runs required to attain the same statistical results. In this paper, we develop the first sequential experimental design method for predator–prey functional response experiments. To make inferences on the parameters in each of the statistical models we consider, we use sequential Monte Carlo, which is computationally efficient and facilitates convenient estimation of important utility functions. It provides coverage of experimental goals including parameter estimation, model discrimination as well as a combination of these. The results of our simulation study illustrate that for predator–prey functional response experiments sequential design outperforms static design for our experimental goals. R code for implementing the methodology is available via https://github.com/haydenmoffat/sequential_design_for_predator_prey_experiments .

Funder

Queensland University of Technology

Austrian Science Fund

Foundation for Education and European Culture

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3