Analytical approximation for invasion and endemic thresholds, and the optimal control of epidemics in spatially explicit individual-based models

Author:

Suprunenko Yevhen F.1ORCID,Cornell Stephen J.2ORCID,Gilligan Christopher A.1

Affiliation:

1. Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK

2. Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK

Abstract

Computer simulations of individual-based models are frequently used to compare strategies for the control of epidemics spreading through spatially distributed populations. However, computer simulations can be slow to implement for newly emerging epidemics, delaying rapid exploration of different intervention scenarios, and do not immediately give general insights, for example, to identify the control strategy with a minimal socio-economic cost. Here, we resolve this problem by applying an analytical approximation to a general epidemiological, stochastic, spatially explicit SIR(S) model where the infection is dispersed according to a finite-ranged dispersal kernel. We derive analytical conditions for a pathogen to invade a spatially explicit host population and to become endemic. To derive general insights about the likely impact of optimal control strategies on invasion and persistence: first, we distinguish between ‘spatial' and ‘non-spatial' control measures, based on their impact on the dispersal kernel; second, we quantify the relative impact of control interventions on the epidemic; third, we consider the relative socio-economic cost of control interventions. Overall, our study shows a trade-off between the two types of control interventions and a vaccination strategy. We identify the optimal strategy to control invading and endemic diseases with minimal socio-economic cost across all possible parameter combinations. We also demonstrate the necessary characteristics of exit strategies from control interventions. The modelling framework presented here can be applied to a wide class of diseases in populations of humans, animals and plants.

Funder

Bill and Melinda Gates Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3