Affiliation:
1. School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
Abstract
The emergence and spread of drug-resistant
Plasmodium falciparum
parasites have hindered efforts to eliminate malaria. Monitoring the spread of drug resistance is vital, as drug resistance can lead to widespread treatment failure. We develop a Bayesian model to produce spatio-temporal maps that depict the spread of drug resistance, and apply our methods for the antimalarial sulfadoxine-pyrimethamine. We infer from genetic count data the prevalences over space and time of various malaria parasite haplotypes associated with drug resistance. Previous work has focused on inferring the prevalence of individual molecular markers. In reality, combinations of mutations at multiple markers confer varying degrees of drug resistance to the parasite, indicating that multiple markers should be modelled together. However, the reporting of genetic count data is often inconsistent as some studies report haplotype counts, whereas some studies report mutation counts of individual markers separately. In response, we introduce a latent multinomial Gaussian process model to handle partially reported spatio-temporal count data. As drug-resistant mutations are often used as a proxy for treatment efficacy, point estimates from our spatio-temporal maps can help inform antimalarial drug policies, whereas the uncertainties from our maps can help with optimizing sampling strategies for future monitoring of drug resistance.
Funder
National Health and Medical Research Council
Australian Research Council