Exact Bayesian inference for the detection of graft-mobile transcripts from sequencing data

Author:

Tomkins Melissa1ORCID,Hoerbst Franziska1ORCID,Gupta Saurabh2ORCID,Apelt Federico2ORCID,Kehr Julia3ORCID,Kragler Friedrich2ORCID,Morris Richard J.1ORCID

Affiliation:

1. Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK

2. Max Planck Institute of Molecular Plant Physiology, Max Planck Institute, Am Mühlenberg 1, Potsdam-Golm 14476, Germany

3. Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststrasse 18, Hamburg 22609, Germany

Abstract

The long-distance transport of messenger RNAs (mRNAs) has been shown to be important for several developmental processes in plants. A popular method for identifying travelling mRNAs is to perform RNA-Seq on grafted plants. This approach depends on the ability to correctly assign sequenced mRNAs to the genetic background from which they originated. The assignment is often based on the identification of single-nucleotide polymorphisms (SNPs) between otherwise identical sequences. A major challenge is therefore to distinguish SNPs from sequencing errors. Here, we show how Bayes factors can be computed analytically using RNA-Seq data over all the SNPs in an mRNA. We used simulations to evaluate the performance of the proposed framework and demonstrate how Bayes factors accurately identify graft-mobile transcripts. The comparison with other detection methods using simulated data shows how not taking the variability in read depth, error rates and multiple SNPs per transcript into account can lead to incorrect classification. Our results suggest experimental design criteria for successful graft-mobile mRNA detection and show the pitfalls of filtering for sequencing errors or focusing on single SNPs within an mRNA.

Funder

H2020 European Research Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3